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1. Preamble

There are various ways for introducing families of orthogonal polynomials. First
of all, they satisfy an orthogonality condition in an interval with respect to a positive
measure. They are also solutions of a second-order linear differential equation (equivalent
to an eigenvalue problem); they satisfy a three-term recurrence relationship with certain
conditions on its form and its coefficients, which ensure, by the Shohat–Favard theorem,
that they are orthogonal; they verify the Christoffel–Darboux identity, which implies the
recurrence relation; they have a structure relation; and they are given by the Rodrigues
formula. For the so-called classical orthogonal families (that is the Jacobi, Bessel, Laguerre
and Hermite polynomials), they can be characterized by the fact that their first derivatives
also form a family of orthogonal polynomials. But the most common way of introducing
them, which is also the historical way, is by using their generating function—that is, denoting
generically by Pn these orthogonal polynomials, a formal relation of the form

G(x, α) =
∞

∑
n=0

anPn(x)αn.

Although it implicitly appeared for solving difference equations in the book of Abraham
de Moivre (1667–1754) published in 1718 [1], the concept of generating function was
introduced by Laplace in 1779 [2] and reproduced in the first book of his treatise on the
analytic theory of probability [3] (Chap. I, pp. 7–48).

All the properties of a family of orthogonal polynomials can be obtained from the
generating functions, and this is why it is useful to have several of them at one’s disposal.
This topic gave rise to a waste literature, which shows its primary importance in the
domain. Generating functions for classical orthogonal polynomials were studied by the
English mathematician George Neville Watson (1886–1965) in four papers [4–7]. Unusual
generating functions were given by Fred Brafman (1923–1959) [8–10], whose work is
reviewed in [11]. On generating functions, see [12–17]. Their history in probability theory
is described in [18].
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In this paper, we develop and exploit a result due to Laplace, which leads us to a new
generating function for the Chebyshev polynomials of the first kind derived in Section 6. In
the second section, we provide the motivation for this work. We explain how generating
functions guided Legendre to the discovery of his orthogonal polynomials in a work on the
attraction of celestial bodies. He was rapidly followed by Laplace, who was studying the
same problem and also obtained the Legendre polynomials. In the third section, we analyze
the work presented by Laplace in another paper on Jupiter and Saturn. In it, he generalized
the function that Legendre and himself had used in their previous works by replacing
the exponent 1/2 with s in the generating function, and he deduced some properties. We
check all the results that he provided. In the fourth section, we discuss some results due
to Lagrange and Euler, who had also considered this generalized function but without
proceeding to its complete analysis. The work of Laplace is developed in the section that
follows. The calculations of Laplace are verified and continued, thus leading to new results
on the extended generating function. In the last section, we exploit these results. The
Fourier expansion of the generalized generating function given by Laplace is related to the
Chebyshev polynomials, for which we obtain new generating functions. A relation to the
generating function of Gegenbauer polynomials is also established. Our conclusion ends
the paper.

2. Motivation

If one knows two sides a and b of a triangle and the angle γ between them, the
third side c is given by the law of cosines, known since a long time ago:

c =
√

a2 − 2ab cos γ + b2.

At the end of the 18th century, scientists were interested in the shape of the Earth and
the attraction of celestial bodies. On Wednesday 22 January 1783, Adrien Marie Legendre
(1752–1833) began to read at the French Academy of Sciences a memoir on the attraction of
spheroids [19].

He denoted by C the center of a spheroid all of whose sections are elliptical, and
by S a point outside it but on one of its axes and at a distance CS = r. He set CM = z
and, for angles, B̂CS = ω, B̂CM = ψ, M̂PQ = θ and M̂CS = µ, from which he ob-
tained (MS)2 = r2 − 2rz cos µ + z2 and cos µ = cos ω cos ψ + sin ω sin ψ cos θ. He gave the
expression of the attraction (P) on S of a particule of mass dM, located at the point denoted
by M above, in the plane of the meridian, along SC and perpendicular to it. The formula
for (P) is

(P) =
∫

(r − z cos µ) dM
(r2 − 2rz cos µ + z2)1/2

.

For computing (P) he used the following series expansion:

∫
(r − z cos µ)z2 dz

(r2 − 2rz cos µ + z2)1/2
=

∫ z2 dz
r2

[
1 + 3A

z2

r2
+ 5B

z4

r4
+ 7C

z6

r6
+ 9D

z8

r8
+ · · ·

]
,

where the coefficients A, B, C, D are the following functions of cos µ:

A =
3

2
cos2 µ − 1

2

B =
5 · 7

2 · 4
cos4 µ − 3 · 5

2 · 4
· 2 cos2 µ +

1 · 3

2 · 4

C =
7 · 9 · 11

2 · 4 · 6
cos6 µ − 5 · 7 · 9

2 · 4 · 6
· 3 cos4 µ +

3 · 5 · 7

2 · 4 · 6
· 3 cos2 µ − 1 · 3 · 5

2 · 4 · 6

D =
9 · 11 · 13 · 15

2 · 4 · 6 · 8
cos8 µ − 7 · 9 · 11 · 13

2 · 4 · 6 · 8
· 4 cos6 µ +

5 · 7 · 9 · 11

2 · 4 · 6 · 8
· 6 cos4 µ

−3 · 5 · 7 · 9

2 · 4 · 6 · 8
· 4 cos2 µ +

1 · 3 · 5 · 7

2 · 4 · 6 · 8
.
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These functions do not contain odd powers of cos µ because Legendre assumed that his
attracting body was symmetrical with respect to the equator and rejected them.

Replacing cos µ by x, these coefficients are the first Legendre polynomials of degrees
2, 4, 6, 8. This is what Legendre did in [20], where he denoted A by X I , B by X I I , and so on.
He explained that these polynomials come out of the expansion of (1 − 2xz + z2)−1/2, and
that it exactly holds that

1/2√
1 − 2xz + z2

+
1/2√

1 + 2xz + z2
= 1 + X Iz2 + X I Iz4 + X I I Iz6 + · · · .

This is the generating function of the Legendre polynomials of even degrees. A list of theo-
rems followed with, in particular, their orthogonality property. Finally, in [21], Legendre
considered the polynomials of even and odd degrees, and he gave their generating function.

In 1784, Laplace presented to the French Academy of Sciences a paper where he consid-
ered the series expansion of the attractions for arbitrary spheroids [22]. Let r =

√
a2 + b2 + c2

be the distance from the origin to the attracted point located at the interior of the spheroid;
θ be the angle between the radius r and the x axis; and ω be the angle between the plane
passing by the x axis and the attracted point and a plane passing by the x and y axis.
Laplace obtained

a = r cos θ, b = r sin θ cos ω, c = r sin θ sin ω.

Now, let R =
√

x2 + y2 + z2 be the distance of the molecule to the origin, and let θ′ and ω′

be the angles similar to those of this molecule. It holds that

x = R cos θ′, y = R sin θ′ cos ω′, z = R sin θ′ sin ω′.

The distance of the molecule to the attracted point becomes

1/T =
√

r2 − 2rR[cos θ cos θ′ + sin θ sin θ′ cos(ω − ω′)] + R2,

and the potential V is given by

V =
∫

TR2 ∂R ∂ω′ ∂θ′ sin θ′,

where the integration with respect to R is taken from 0 to its value on the surface of the
spheroid, that of ω′ from 0 to 2π and that of θ′ from 0 to π. The potential V satisfies
an equation that is the well-known Laplace equation in polar coordinates. The function T
satisfies the Laplace equation, and its series expansion is

T = Q(0)/r + Q(1)R/r2 + Q(2)R2/r3 + · · ·

The Q(i)s are the Laplace coefficients, and are nothing else than the Legendre polynomials
after replacing x by cos θ cos θ′ + sin θ sin θ′ cos(ω − ω′).

Thus, we see that the law of cosines, which leads to the functions (1− 2α cos θ + α2)−1/2 or
(1 − 2αx + α2)−1/2, played a fundamental role in the birth of orthogonal polynomials via
their generating function. The authors of this paper are preparing a book on a chronological
history of the birth and early developments of orthogonal polynomials.

3. A Work by Laplace

In a 1785 paper devoted to the theory of Jupiter and Saturn [23] (p. 124ff.), Pierre-Simon
Laplace (23 March 1749–5 March 1827) was brought to consider the Fourier expansion of
the function
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(1 − 2α cos θ + α2)−s = b(0)s /2 + b(1)s cos θ + b(2)s cos 2θ + b(3)s cos 3θ + · · · , (1)

where the b(i)s are functions of α and s. They are, in fact, given by

b(i)s =
1

π

∫ π

0
(1 − 2α cos θ + α2)−s cos iθ dθ,

and, using the notation ζ = eiθ , it holds that b(i)s = b(−i)
s ,

1 − 2α cos θ + α2 = 1 + α2 − α(ζ + ζ−1) = (1 − αζ)(1 − αζ−1),

and the preceding expansion becomes (1 − 2α cos θ + α2)−s = ∑
∞
i=−∞ b(i)s ζ i [24].

Since Laplace did not give the detail of his calculations, we checked all the results that
he provided.

Taking the logarithmic derivative of both members with respect to θ, Laplace obtained

−2sα sin θ

1 − 2α cos θ + α2
=

−b(1)s sin θ − 2b(2)s sin 2θ − · · ·
b(0)s /2 + b(1)s cos θ + b(2)s cos 2θ + · · ·

.

Cross-multiplying, using the formulæ

2 cos a cos b = cos(a + b) + cos(a − b)

2 sin a cos b = sin(a + b) + sin(a − b)

2 sin a sin b = cos(a − b)− cos(a + b),

and comparing the coefficients of the terms in cosines, he found the three-term
recurrence relation,

(i − s)αb(i)s = (i − 1)(1 + α2)b(i−1)
s − (i + s − 2)αb(i−2)

s , (2)

and added that all b(i)s can be computed from this relation if b(0)s and b(1)s are known.
Replacing s by s+1 in (1), multiplying it by 1−2α cos θ+ α2, replacing (1−2α cos θ+ α2)−s

by its series expansion, Laplace obtained

b(0)s /2 + b(1)s cos θ + b(2)s cos 2θ + · · · = (1 − 2α cos θ + α2)(b(0)s+1/2 + b(1)s+1 cos θ + · · · ).

Then, comparing similar cosines, Laplace found that

b(i)s = (1 + α2)b(i)s+1 − αb(i−1)
s+1 − αb(i+1)

s+1 . (3)

Formula (2) gives, by replacing s by s + 1 and i by i + 1,

(i − s)αb(i+1)
s+1 = i(1 + α2)b(i)s+1 − (i + s)αb(i−1)

s+1 . (4)

Multiplying relation (3) by (i − s) and using the preceding relation, it becomes

(i − s)b(i)s = 2sαb(i−1)
s+1 − s(1 + α2)b(i)s+1. (5)

Changing i into i + 1, it holds that

(i − s + 1)b(i+1)
s = 2sαb(i)s+1 − s(1 + α2)b(i+1)

s+1 .
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Multiplying this relation by (i − s)α and substituting b(i+1)
s+1 by its expression given by (4),

Laplace obtained

(i − s)(i − s + 1)αb(i+1)
s = s(i + s)α(1 + α2)b(i−1)

s+1 + s[2(i − s)α2 − i(1 + α2)2]b(i)s+1. (6)

Laplace then wrote that ces deux expressions de b(i)s et de b(i+1)
s donnent. . . (“these two expres-

sions of b(i)s and of b(i+1)
s give. . . ”), which meant that he eliminated b(i−1)

s+1 by multiplying

(5) by (i + s)(1 + α2), (6) by 2 and subtracting, and he obtained

(1 − α2)2sb(i)s+1 = (i + s)(1 + α2)b(i)s − 2(i − s + 1)αb(i+1)
s .

Changing i into −i and, since b(i)s = b(−i)
s , he finally obtained

(1 − α2)2sb(i)s+1 = (s − i)(1 + α2)b(i)s + 2(i + s − 1)αb(i−1)
s , (7)

which allows the computation of the coefficients b(i)s+1 if the b(i)s are known.

Setting λ = 1 − 2α cos θ + α2, he obtained, by differentiating λ−s with respect to α,
and after some calculations,

∂b(i)s

∂α
=

i + (i + 2s)α2

α(1 − α2)
b(i)s − 2(i − s + 1)

1 − α2
b(i+1)

s .

Differentiating again, Laplace explained that the b(i)s and their successive derivatives can

all be obtained from b(0)s and b(1)s . For obtaining these two expressions, he used the identity
λ−s = (1 − αeiθ)−s(1 − αe−iθ)−s, developed each member into a series, multiplied them
together and found, for i = 0 and i = 1, that

b(0)s = 2

[
1 + s2α2 +

(
s(s + 1)

2!

)2

α4 +

(
s(s + 1)(s + 2)

3!

)2

α6 + · · ·
]

, (8)

b(1)s = 2α

[
s +

s
1

s(s + 1)

2!
α2 +

s(s + 1)

2!

s(s + 1)(s + 2)

3!
α4 + · · ·

]
. (9)

In the theory of planets, s = 1/2 and these series do not converge quickly if α is not quite
small. On the contrary, their convergence is fast for s = −1/2 if α2

< 1/2, which is the

case in the theory of Jupiter and Saturn, since α2
< 1/3. Thus, having computed b(0)−1/2

and b(1)−1/2 by these series, Laplace obtained b(0)1/2 = b(0)−1/2+1 and b(1)1/2 = b(1)−1/2+1 by his

Formula (7) linking the b(i)s+1 with the b(i)s .

Laplace reproduced these results in his Traité de mécanique céleste [25], Tome I, Livre II,
no. 49, pages 267ff., in Chapter VI, entitled Seconde approximation des mouvements célestes,
ou théorie de leur perturbation (“Second approximation of celestial movements, or theory of
their disturbance”).

4. A Work by Lagrange

The expansion of (1 − 2α cos θ + α2)−s into a cosine series was already given by
Lagrange in 1762 [26] (Œuvres, vol. 1, page 620) in a section also devoted to Jupiter and
Saturn. He set

P = 1 + sα cos θ +
s(s + 1)

2!
α2 cos 2θ +

s(s + 1)(s + 2)

3!
α3 cos 3θ + · · ·

Q = 1 + sα sin θ +
s(s + 1)

2!
α2 sin 2θ +

s(s + 1)(s + 2)

3!
α3 sin 3θ + · · · ,
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and, since

P + iQ = [1 − α(cos θ + i sin θ)]−s

P − iQ = [1 − α(cos θ − i sin θ)]−s,

Lagrange obtained (1 − 2α cos θ + α2)−s = P2 + Q2. Using the relation cos mθ cos nθ +
sin mθ sin nθ = cos(m − n)θ, he arrived at

(1 − 2α cos θ + α2)−s = A+ B cos θ + C cos 2θ +D cos 3θ + · · · ,

with

A = 1 + s2α2 +

(
s(s + 1)

2!

)2

α4 +

(
s(s + 1)(s + 2)

3!

)2

α6 + · · ·

B/2 = sα + s
s(s + 1)

2!
α3 +

s(s + 1)

2!

s(s + 1)(s + 2)

3!
α5 + · · ·

C/2 =
s(s + 1)

2!
α2 + s

s(s + 1)(s + 2)

3!
α4 +

s(s + 1)

2

s(s + 1)(s + 2)(s + 3)

4!
α6 + · · · ,

and so on. Lagrange added that, after having determined A and B, the other coefficients
could be easily determined by taking the logarithmic derivatives of the preceding relation,
cross-multiplying both members and comparing their terms. He wrote that one obtained
“as Mr. Euler was the first to find it in his Recherches sur le mouvement de Saturne” [27]
(p. 25ff.),

C =
(1 + α2)B − 2sαA

(2 − s)α
, D =

2(1 + α2)C − (1 + s)αB
(3 − s)α

, E =
3(1 + α2)D − (2 + s))αC

(4 − s)α
.

Lagrange also gave the expression for E . He then deduced from these relations the coeffi-
cients of the series (1 − 2α cos θ + α2)−s−1 that he needed for his calculations.

The expressions given by Laplace for b(0)s and b(1)s are the same as those of A and

B due to Lagrange. The recurrence relation of Laplace for the coefficients b(i)s have to be
compared with those due to Euler and reproduced by Lagrange, for the first four of them.
In [27], Euler considered the expansion of functions of the form 2(1 − 2a cos θ + a2)−s, with
0 < a < 1, into series involving the cosines of multiples of θ. Thus (see [28]),

2(1 − 2a cos θ + a2)−s =
∞

∑
j=∞

b(j)
s cos jθ, b(−j)

s = b(j)
s ,

where the coefficients are given by

b(j)
s =

2

π

∫ π

0

cos jθ
(1 − 2a cos θ + a2)s dθ.

5. Developments

Let us now express the coefficients b(i)s for s = 0, . . . , 4.

The coefficients b(0)s and b(1)s were expressed by Laplace as the series (8) and (9),
respectively, but he did not give their sums for arbitrary values of s. This is what we will
now obtain.

For s = 0, we have b(0)0 = 2 and b(1)0 = 0. Using the recurrence relation (2), we obtain

that, for all i ≥ 1, b(i)0 = 0.

For s = 1, the relation (2) becomes

αb(i)1 = (1 + α2)b(i−1)
1 − αb(i−2)

1 ,
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and the series (8) and (9) furnish

b(0)1 = 2(1 + α2 + α4 + · · · ) = 2/(1 − α2), b(1)1 = 2α(1 + α2 + α4 + · · · ) = 2α/(1 − α2).

A proof by induction shows us that, for all i,

b(i)1 =
2αi

1 − α2
. (10)

Thus, when s is an integer, all the coefficients b(i)s+1 can be computed from the values of

b(i)s using (7). For example, for s = 1, this relation gives

b(i)2 =
2αi

(1 − α2)2

[
i +

1 + α2

1 − α2

]
. (11)

This expression of b(i)2 was validated, after some calculations, by plugging it into (2), and it
followed that we obtained the sums of the series (8) and (9) for s = 2, which are

b(0)2 =
2(1 + α2)

(1 − α2)3
, b(1)2 =

4α

(1 − α2)3
.

It follows from (9) and (11) that

b(i)2 =
b(i)1

1 − α2

[
i +

1 + α2

1 − α2

]
.

Similarly, we obtain

b(i)3 =
αi

(1 − α2)3

{[
i +

1 + α2

1 − α2

][
i + 2

1 + α2

1 − α2

]
+

4α2

(1 − α2)2

}
, (12)

a formula that was also checked by inserting it into (2), and which gives

b(0)3 =
2

(1 − α2)5
(1 + 4α2 + α4), b(1)3 =

2

(1 − α2)5
(3 + α2).

From (11) and (12), we obtain

b(i)3 =
b(i)2

2

[
i + 2

1 + α2

1 − α2

]
+

4αi+2

(1 − α2)5
.

We also computed the coefficients b(i)4 but their expression does not simplify easily.
We have

b(i)4 =
αi

(1 − α2)5
(−3iα4 + i2α4 + 2α4 + 8α2 − 2i2α2 + i2 + 3i + 2),

which leads to

b(0)4 =
2αi

(1 − α2)5
(1 + 4α2 + α4), b(1)4 =

12αi(1 + α2)

(1 − α2)5
.

For larger values of s, the expressions of the coefficients b(n)s become more complicated,
but for all s they have αn in factor. This result is exploited in the next section.
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6. Exploitation

Let us now extract some new consequences from the results given by Euler, Lagrange
and Laplace and from those of the preceding sections.

Remember that the Chebyshev polynomials of the first kind are defined by Tn(x) = cos(nθ)
and those of the second kind by Un(x) = sin((n + 1)θ)/ sin θ, where θ = arccos x.

There exist several generating functions for the Chebyshev polynomials. Among them,
we consider the following ones for those of the first kind:

1 − α2

1 − 2αx + α2
= 1 + 2

∞

∑
n=1

αnTn(x),
x − α

1 − 2αx + α2
=

∞

∑
n=0

αnTn+1(x), (13)

and, for those of the second kind, only this one:

1

1 − 2αx + α2
=

∞

∑
n=0

αnUn(x). (14)

We begin by showing how the Fourier expansion (1) given by Laplace can be written
as a series in the Chebyshev polynomials of the first kind. With θ = arccos x, this expansion
becomes the Chebyshev series

(1 − 2α cos θ + α2)−s = (1 − 2αx + α2)−s = b(0)s T0(x)/2 + b(1)s T1(x) + b(2)s T2(x) + b(3)s T3(x) + · · · (15)

This formula provides a whole family of new expansions of the function (1− 2αx + α2)−s

in the Chebyshev polynomials of the first kind, a result that seems to have never been given

before. Moreover, since the coefficients b(n)s of the polynomials Tn all have αn in factor, these
expansions provide a whole family of new generating functions for these polynomials. Let us
consider those corresponding to s = 0, 1 and 2.

For s = 0, the expansion (15) gives us

(1 − 2α cos θ + α2)−0 = (b(0)0 /2)T0(x) = 1,

which is correct, since T0(x) = 1.

From what precedes, from (10) and from (15), we obtain, for s = 1, the following
generating function for the Chebyshev polynomials Tn of the first kind:

1

1 − 2αx + α2
=

2

1 − α2

[
T0(x)

2
+

∞

∑
n=1

αnTn(x)

]
, (16)

which is the first formula in (13).
Replacing 1/(1− α2) in (16) by 1+ α2 + α4 + · · · , gathering the polynomial coefficients

of each αn and using the sum formulæ,

Un(x) =





2 ∑
n
j odd Tj(x), n odd

2 ∑
n
j even Tj(x), n even

allows us to recover the generating function of the polynomials Un given in (14).

For s = 2, we obtain from (11)

1

(1 − 2αx + α2)2
=

2

(1 − α2)2

[
1 + α2

1 − α2

T0(x)
2

+
∞

∑
n=1

αn
(

n +
1 + α2

1 − α2

)
Tn(x)

]

=
1 + α2

(1 − α2)2(1 − 2αx + α2)
+

2

(1 − α2)2

∞

∑
n=1

nαnTn(x), (17)
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which leads to the following new generating function for the Chebyshev polynomials of
the first kind:

α2x + x − 2α

(1 − 2αx + α2)2
=

∞

∑
n=1

nαn−1Tn(x), (18)

which has to be compared with the second formula in (13).

For larger values of s, we also obtain new, but more complicated, generating functions

for the Chebyshev polynomials, since, as seen above, for all s the coefficients b(n)s have αn

in factor but also include extra terms in n.

Remark 1. Notice that, setting z = (1 + α2)/α, the recurrence relation (2) for the b(i)1 becomes

b(i)1 = zb(i−1)
1 − b(i−2)

1 ,

with b(0)1 = 2/(1 − α2) and b(1)1 = 2α/(1 − α2). Apart from the initializations and the factor 2 in
front of z, this recurrence relation is that of the Chebyshev polynomials, a result mentioned in [29]
(Vol. I, pp. 445–446).

Remember now that the generating function for the Gegenbauer polynomials C(s)
n is

1

(1 − 2αx + α2)s =
∞

∑
n=0

αnC(s)
n (x), (19)

and it also holds that

1 − αx
(1 − 2αx + α2)s+1

=
∞

∑
n=0

n + 2s
2s

αnC(s)
n (x). (20)

For s = 1/2, the polynomials C(1/2)
n are the Legendre polynomials Pn and, when s = 1,

C(1)
n = Un.

From (17) and (19) with s = 2, we obtain the following new relation between the

generating functions of the polynomials C(2)
n and Tn:

α2(α2 − 3)
∞

∑
n=0

αnC(2)
n (x) = 2

∞

∑
n=1

nαnTn(x).

7. Conclusions

In this Note, we showed that the Fourier expansion of (1 − 2α cos θ + α2)−s studied
by Euler, Lagrange and Laplace gives rise to a family of new generating functions for the
Chebyshev polynomials. Other results of the same type can be found, for example, in [30]
and [31]. Notice also that (14), (15), (19) and (20) furnish four expansions of the function
(1 − 2αx + α2)−s, two in Chebyshev polynomials and two in Gegenbauer polynomials.

The moral of this story is Study the past if you would define the future (Confucius).
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